

ANNUAL WATER QUALITY REPORT

REPORTING YEAR 2019

Presented By
Plymouth DPW Water Division

Our Mission Continues

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2019. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

Please remember that we are always available should you ever have any questions or concerns about your water.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as those with cancer undergoing chemotherapy, those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or <http://water.epa.gov/drink/hotline>.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the Massachusetts Department of Environmental Protection (MADEP) and the U.S. Environmental Protection Agency (U.S. EPA) prescribe regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) and Massachusetts Department of Public Health (DPH) regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

We remain vigilant in delivering the best-quality drinking water

the Kingston and Carver boundaries; Plymouth Center; Chiltonville; Manomet; and Cedarville areas east of Route 3 south to the Bourne town line.

Source Water Assessment

A Source Water Assessment Plan (SWAP) is now available at our office. This plan is an assessment of the delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area, and a determination of the water supply's susceptibility to contamination by the identified potential sources.

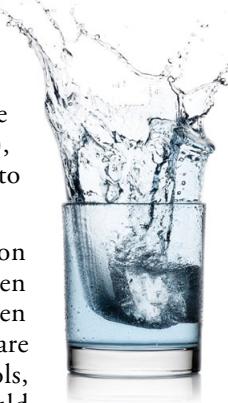
According to the Source Water Assessment Plan, our water system had a susceptibility rating of "medium." If you would like to review the Source Water Assessment Plan, please feel free to contact our office during regular office hours.

Where Does My Water Come From?

The Town of Plymouth's municipal water supply consists of two aquifers and twelve gravel-packed wells at ten locations throughout Plymouth. The Plymouth Water Division spends over \$60,000 annually testing its water to ensure water quality to continue its mission to provide the highest-quality drinking water and fire protection at the lowest possible cost to the ratepayers. The Plymouth water system serves the entire northern section of town between Federal Furnace Road and the Kingston and Carver boundaries; Plymouth Center; Chiltonville; Manomet; and Cedarville areas east of Route 3 south to the Bourne town line.

Water Treatment Process

The groundwater is naturally corrosive, so we add sodium hydroxide (to adjust the pH to 8.5). Chlorine is then added as a precaution against any bacteria that may be present. (We carefully monitor the amount of chlorine, adding the lowest quantity necessary to protect the safety of your water without compromising taste.) Finally, some wells get a phosphate blend (for iron and manganese sequestering) before pumping to water storage tanks and into your home or business.


QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call Peter Gordon, Plymouth Water Division Water Quality Manager, at (508) 830-4162 x12141.

What's a Cross-Connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems), or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand), causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or when attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continuously jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed industrial, commercial, and institutional facilities in the service area to make sure that potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test backflow preventers to make sure that they provide maximum protection.

For more information on backflow prevention, contact the Safe Drinking Water Hotline at (800) 426-4791.

About Our Violation

During the summer of 2019, we did not collect the prescribed amount of lead and copper samples necessary to satisfy our Department of Environmental Protection requirement. We did collect and analyze the appropriate amount of residential samples needed to calculate the 90th percentile; however, of the four samples required from Schools or Child Care Facilities, only two were taken. The additional samples were collected and analyzed immediately upon notification of the deficiency. We have already taken the steps to ensure that adequate monitoring and reporting will be performed in the future so that this oversight will not be repeated.

BY THE NUMBERS

The number of gallons of water produced daily by public water systems in the U.S.

34
BILLION

1
MILLION

The number of miles of drinking water distribution mains in the U.S.

The amount of money spent annually on maintaining the public water infrastructure in the U.S.

135
BILLION

300
MILLION

The number of Americans who receive water from a public water system.

The age in years of the world's oldest water found in a mine at a depth of nearly two miles.

2
BILLION

151
THOUSAND

The number of active public water systems in the U.S.

The number of highly trained and licensed water professionals serving in the U.S.

199
THOUSAND

93

The number of federally regulated contaminants tested for in drinking water.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. And the water we deliver must meet specific health standards. Here, we show only those substances that were detected in our water. (A complete list of all our analytical results is available upon request.) Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

We participated in the 4th stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR4) program by performing additional tests on our drinking water. UCMR4 sampling benefits the environment and public health by providing the EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if the EPA needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data are available to the public so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the EPA's Unregulated Contaminants Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

REGULATED SUBSTANCES								
SUBSTANCE (UNIT OF MEASURE)		YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Barium (ppm)		2017	2	2	0.074	0.000–0.074	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Chlorine (ppm)		2019	[4]	[4]	0.49	0.10–0.49	No	Water additive used to control microbes
Nitrate (ppm)		2019	10	10	2.02	0.13	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
TTHMs [Total Trihalomethanes] (ppb)		2019	80	NA	22.0	3.23–22.0	No	By-product of drinking water disinfection
Tetrachloroethylene (ppb)		2019	5	0	2.19	ND–2.19	No	Discharge from factories and dry cleaners
Total Organic Carbon ¹ (ppm)		2019	TT	NA	1.166	ND–1.166	No	Naturally present in the environment

Tap water samples were collected for lead and copper analyses from sample sites throughout the community								
SUBSTANCE (UNIT OF MEASURE)		YEAR SAMPLED	AMOUNT DETECTED (90TH %ILE)	SITES ABOVE AL/TOTAL SITES	VIOLATION	TYPICAL SOURCE		
Copper (ppm)		2019	1.3	1.3	0.149	0/30	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)		2019	15	0	2.5	0/30	No	Lead services lines; Corrosion of household plumbing systems including fittings and fixtures; Erosion of natural deposits

SECONDARY SUBSTANCES								
SUBSTANCE (UNIT OF MEASURE)		YEAR SAMPLED	SMCL	MCLG	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Chloride (ppm)		2019	250	NA	220	12–220	No	Runoff/leaching from natural deposits
Copper (ppm)		2019	1.0	NA	0.331	0.006–0.331	No	Corrosion of household plumbing systems; Erosion of natural deposits
Iron (ppb)		2019	300	NA	210	ND–210	No	Leaching from natural deposits; Industrial wastes
Manganese ² (ppb)		2019	50	NA	125	ND–125	No	Leaching from natural deposits
Sulfate (ppm)		2019	250	NA	8.1	3.7–8.1	No	Runoff/leaching from natural deposits; Industrial wastes

UNREGULATED SUBSTANCES							
SUBSTANCE (UNIT OF MEASURE)		YEAR SAMPLED	AMOUNT DETECTED		RANGE LOW-HIGH	TYPICAL SOURCE	
Chloroform (ppb)		2018	0.82		ND–0.56	By-product of drinking water disinfection	
Sodium (ppm)		2017	12.4–91.4		12.4–91.4	Naturally occurring	

UNREGULATED CONTAMINANT MONITORING RULE PART 4 (UCMR4)

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH
Bromide (ppm)	2019	0.08	ND–0.08
Germanium (ppb)	2019	0.50	ND–0.50
Manganese ² (ppb)	2019	130	ND–130

¹The value reported under Amount Detected for TOC is the lowest ratio between the percentage of TOC actually removed to the percentage of TOC required to be removed. A value of greater than 1 indicates that the water system is in compliance with TOC removal requirements. A value of less than 1 indicates a violation of the TOC removal requirements.

²Manganese is a naturally occurring mineral found in rocks, soil, groundwater, and surface water. Manganese is necessary for proper nutrition and is part of a healthy diet, but it can have undesirable effects on certain sensitive populations at elevated concentrations. U.S. EPA and MADEP have established public health advisory levels for manganese to protect against concerns of potential neurological effects.

Definitions

90th %ile: Out of every 10 homes sampled, 9 were at or below this level. This number is compared to the Action Level to determine lead and copper compliance.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal)

Goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

SMCL (Secondary Maximum Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

