Businesses vary greatly in size and purpose, and this will be reflected in the proportionate energy consumption for each category of end use. The accompanying table is derived from national surveys of industrial and commercial facilities. Most Massachusetts manufacturers, with a few exceptions, have energy uses within the ranges of this table. A manufacturer of basic materials would have proportionately more process heating and an assembly facility would have more space heating, lighting, etc. A large facility from heavy industry may have large boilers and even electrical cogeneration while a smaller facility in a lighter industry or a commercial building may have proportionately more energy use for auxiliary food services, domestic hot water, etc. (designated “Other” in the Table).

Devising an energy strategy with the greatest potential savings involves identifying the major energy end uses within the facility. Capital costs and operating costs are also needed for ranking various conservation measures. Note that the payback periods will be affected by hours of operation and load profiles. Avoided peak demand surcharges and other energy pricing variability can be important in planning your energy strategy.

Energy Conservation Fact Sheet:

Energy Saving Tips for Industrial and Commercial Buildings

Introduction

Energy is a significant and growing cost for most businesses. A review of how energy is used in buildings and then targeting improvements in equipment and procedures can lead to big cost savings. Furthermore, many corporate and government programs now strongly encourage energy conservation. The purpose of this fact sheet is to provide examples of energy saving tips for the general categories of building energy use that apply to most facilities. (Potential energy savings for manufacturing processes can be found in OTA’s fact sheet “Overview of Energy Efficiency Techniques and Resources”.)

<table>
<thead>
<tr>
<th>Facility Energy Use</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating: Process and Space</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>Cooling: Process and Space</td>
<td>2%</td>
<td>10%</td>
</tr>
<tr>
<td>Machine Drives and Fans</td>
<td>3%</td>
<td>20%</td>
</tr>
<tr>
<td>Lighting</td>
<td>2%</td>
<td>22%</td>
</tr>
<tr>
<td>Office Equipment</td>
<td>1%</td>
<td>7%</td>
</tr>
<tr>
<td>Other</td>
<td>5%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Businesses vary greatly in size and purpose, and this will be reflected in the proportionate energy consumption for each category of end use. The accompanying table is derived from national surveys of industrial and commercial facilities. Most Massachusetts manufacturers, with a few exceptions, have energy uses within the ranges of this table. A manufacturer of basic materials would have proportionately more process heating and an assembly facility would have more space heating, lighting, etc. A large facility from heavy industry may have large boilers and even electrical cogeneration while a smaller facility in a lighter industry or a commercial building may have proportionately more energy use for auxiliary food services, domestic hot water, etc. (designated “Other” in the Table).

Devising an energy strategy with the greatest potential savings involves identifying the major energy end uses within the facility. Capital costs and operating costs are also needed for ranking various conservation measures. Note that the payback periods will be affected by hours of operation and load profiles. Avoided peak demand surcharges and other energy pricing variability can be important in planning your energy strategy.

Energy Conservation

Many criteria can be used in decisions whether to install energy-saving equipment or implement new procedures. The most frequently considered are total costs, rate of return, ease of implementation, and certainty of the desired outcome. The following four categories are examples of how your facility can make changes to achieve energy conservation.

HVAC

A big category for light industrial operations is HVAC. Waste heat from processes, lighting, air compressors, etc. can contribute in winter but may not be well distributed. Waste heat at some facilities can create additional cooling loads not only in summer, but to a lesser degree in the other seasons as well. Consider the viability of combined heat and power for your facility. [For more information: http://www.northeastchp.org](http://www.northeastchp.org)

- Waste heat from compressors can frequently be captured for space heating or other uses
- Supply air for the compressors and boilers should be from the outside, not indoor air
- Seal leaks and increase insulation, at least up to recommended R-values
- Reduce A/C loads on cooler, less humid days by increasing the outside air intake
- Identify and correct unwanted drafts and unwanted air movement from one area to another.
- Use ceiling fans where appropriate
- Adjacent rooms that are maintained at different temperatures should be separated by doors or flexible transparent barriers
- Heating and cooling ducts should be insulated
- Use automatic controls such as programmable thermostats, time clocks, bypass timers, weather sensors, and activity sensors, where appropriate
- Areas of building prone to solar heat gain should be shaded in summer and exposed in winter
- Thermostats should be set cooler in winter and warmer in summer

Additional Energy Conservation Services

Many electric and gas utilities provide financial assistance for energy audits and energy efficient equipment. Web links to many of these energy efficiency and renewable energy programs can be found on the OTA Energy Web Page.
Lighting Design

Energy efficient lighting starts with efficient lighting design. Often people work in older spaces that were designed for different tasks or a different layout.

- Evaluate the design of the general and task lighting for the work being done in the area
- Consider lighting that could be turned off in over lit areas or occupancy sensors for areas of infrequent use
- Replace mercury vapor lamps with super T8 or high output T-5 fluorescents, or other more efficient lighting
- Have fixtures and lamps cleaned annually or as necessary to maintain light output
- Upgrade lighting efficiency with retrofit kits or total replacement
- Consider controls to turn off lights near outside walls that get natural daylighting
- Use energy efficient lighting design and equipment for outside (e.g. timers seasonally adjusted)
- Disconnect ballasts from delamped fixtures
- Use electronic, not magnetic ballasts

More information is available on the Energy Star website:

http://www.energystar.gov/index.cfm?c=sb_guidebook.sb_guidebook_lighting

Energy Efficiency Programs for Buildings

ENERGY STAR is a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy helping businesses to save money and protect the environment through energy efficient products and practices. ENERGY STAR offers a proven energy management strategy that helps in measuring current energy performance setting goals, tracking savings, and rewarding improvements. EPA has an energy performance tool where an operator can enter energy information from a building and the tool will calculate the efficiency of that building. More information on ENERGY STAR is found on the program’s website at: http://www.energystar.gov.

The U.S. Green Building Council (USGBC) has created a Leadership in Energy and Environmental Design (LEED) Green Building Rating SystemTM which is a nationally accepted benchmark for the design, construction, and operation of high performance green buildings. The LEED rating system provides the building industry with credible standards for what constitutes a green building. Energy efficiency is one of the five key areas where credit for performance is given. LEED provides business owners and operators with the tools they need to have an immediate and measurable impact on their buildings’ performance. More information on LEED buildings is found on the USGBC website at: http://www.usgbc.org. (See “Green Building Rating System for Existing Buildings.”)

References

2. For advisories on variable pricing and procurements see http://www.mass.gov/doer